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Abstract. Activity-recognition classifiers, which label an activity based on sensordata, have decreased classification accuracy
when used in the real world with a particular person. To improve the classifier, a Multi-Classifier Adaptive-Training algorithm
(MCAT) is proposed. The MCAT adapts activity recognition classifier to a particular person by using four classifiers to utilise
unlabelled data. The general classifier is trained on the labelled data available before deployment and retrieved in the controlled
environment. The specific classifier is trained on a limited amount of labelleddata belonging to the new person in the new
environment. A domain-independent meta-classifier decides whether toclassify a new instance with the general or specific
classifier. The final, second meta-classifier decides whether to include the new instance into the training set of the general
classifier. The general classifier is periodically retrained, gradually adapting to the new person in the new environment. The
adaptation results were evaluated for statistical significance. Results showed that the MCAT outperforms competing approaches
and significantly increases the initial activity-recognition classifier classification accuracy.

Keywords: adaptation, semi-supervised learning, adaptation to the person, MCAT - multi classifier adaptive training, activity
recognition

1. Introduction

Applications that classify highly variable data with
machine learning are often faced with the problem
of decreased classification accuracy when deployed
in a real-world situation. For example, an activity-
recognition classifier may show high classification ac-
curacy when tested in a controlled environment, yet
be significantly less accurate with an end-user. This is-
sue could be resolved if enough person-specific data
could be labelled in the real-world situation in which
the classifier is deployed. However, since this is of-
ten impractical and labour-intensive, semi-supervised
learning can be used to automatically label the data of
specific end-user.

In semi-supervised learning, one or multiple classi-
fiers usually label each instance. A mechanism selects
the final class based on their outputs. If the confidence

in this class is sufficient, it is used to label the instance,
which is then added into the training set of the clas-
sifiers. This approach raises the following three chal-
lenges: (i) how to design the classifiers and what data
to use for training each of them; (ii) how to choose the
final class during the selection process; and (iii) how
to decide if an instance will be added to the training set
of the classifiers.

This paper introduces a novel algorithm for adapting
an activity-recognition classifier to a person. This algo-
rithm is referred to as Multi-Classifier Adaptive Train-
ing (MCAT). It addresses all of the above-mentioned
challenges. The algorithm is based on the following
key contributions: (i) it introduces two classifiers for
classifying activities, a general one (trained on general
data labelled in a controlled environment), and a spe-
cific one (trained on a limited number of labelled in-
stances belonging to a specific person); (ii) the selec-
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tion of the final class is handled by a meta-classifier,
which uses the outputs of both the specific and gen-
eral classifiers; and (iii) the decision about which in-
stance to include in the training set of the general
classifier is tackled by an additional meta-classifier.
The two meta-classifiers combine the general activity-
recognition model with the end-user model in the envi-
ronment in which the classifiers are deployed. The fi-
nal contribution of the paper is the training procedure,
which takes maximum advantage of all the available
data to properly train each of the four classifiers.

The MCAT algorithm was implemented and evalu-
ated on an activity-recognition domain based on Ultra-
Wideband (UWB) localisation technology. The indi-
viduals had four wearable sensors attached to their
clothes (chest, waist and both ankles). The general
activity-recognition domain knowledge was induced
from the data of the individuals performing activities
while wearing the sensors in the controlled laboratory
environment. The specific data was obtained from an
additional person to whom the system was adapted.
The proposed approach was compared to three adap-
tive approaches: the initial version of the proposed ap-
proach [5], the self-learning algorithm [32], and the
majority-vote algorithm [20,21].

The experimental results show that the MCAT algo-
rithm successfully increases the classification accuracy
of the initial activity-recognition classifier and signifi-
cantly outperforms all three competing methods.

The rest of the paper is structured as follows. Sec-
tion 2 reviews the related work on semi-supervised
learning approaches and their use in adapting activity
recognition. Section 3 introduces the motivating do-
main. Section 4 explains the MCAT algorithm. Section
5 describes the experimental setup and the results. Fi-
nally, section 6 concludes the paper.

2. Related Work

Semi-supervised learning is a technique in machine-
learning that uses both labelled and unlabelled data. It
is gaining popularity because the technology makes it
increasingly easy to generate large datasets, whereas
labelling still requires time-intensive human effort.
The main idea of the semi-supervised approach is to
extend classifiers either trained in supervised or unsu-
pervised mode to label unlabelled data and include ad-
ditional information into classifiers.

A similar approach is active learning, which also
uses supervised learning for the initial classification.

However, when the classifier is less confident in its
output, a human annotator is consulted [6,27]. Human
interaction is needed when high-risk data must be la-
belled, such as the data of patients with degenerative
diseases. The focus of this paper is on low-risk data,
where the cost of active learning is too high.

Four dimensions have been proposed along which
semi-supervised learning can be categorised [32]: (i)
single- and multiple-classifier; (ii) single- and multi-
view; (iii) inductive and transductive; and (iv) classifier
and database approaches. The single-classifier meth-
ods use only one classifier for the classification task,
whereas multiple-classifier methods use two or more
classifiers. The key characteristic of multi-view meth-
ods is multiple classifiers with different features and
data for one classification problem. Single-view meth-
ods use classifiers with the same feature vector, but
differentiate in the algorithm used for learning. Induc-
tive methods first produce labels for unlabelled data
and then train a classifier to use this self-labelled data.
Transductive methods only produce labels and do not
generate a new classifier. Classifier-based approaches
start from one or more initial classifiers and enhance
them iteratively. The database approaches discover an
inherent geometry in the data and exploit it to find
a good classifier. This paper will focus on multiple-
classifier, single-view, inductive, classifier-based semi-
supervised learning.

Self-training is the most common method that uses
a single classifier [32]. After an unlabelled instance
is classified, the classifier returns a confidence in its
own prediction, or the class probability. If a class-
probability threshold is reached, the instance is added
to the classifier’s training set, and the classifier is
retrained. Bicocchi et al. [1] have successfully ap-
plied the self-training method to activity-recognition
domains. Their activity-recognition classifier was ini-
tially trained on camera data and could recognise four
atomic activities. The classifier was later used to label
accelerometer data, which was intended to be used au-
tonomously. Reported results are 80 percent classifica-
tion accuracy for the self-trained accelerometer classi-
fier, while the initial camera-based classifier achieves
88 percent classification accuracy. The self-training
method can only be used if the initial classifier alone
achieves a high classification accuracy, since misclas-
sified instances used for retraining can decrease the
classifier accuracy. The self-training has also been suc-
cessfully applied to several other domains, such as
handwriting recognition [10], natural language pro-
cessing [13], and protein-coding gene recognition [9].
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Democratic co-learning [31] is a single-view tech-
nique with multiple classifiers. All the classifiers have
the same set of features that are trained on the same la-
belled data, but with different algorithms. When an un-
labelled instance enters the system, all classifiers pro-
vide an output. The final label is based on a weighted
majority vote among the classifiers. If the voting re-
sults have sufficient confidence, the instance is added
in the training set of all the classifiers.

Co-training [2] is a multi-view method with two
independent classifiers. To achieve independence, the
features are split into two feature subspaces, one for
each classifier. The classifier that surpasses a confi-
dence threshold for a given instance can classify the in-
stance. The instance is then added to the training set of
the classifier that did not surpass the confidence thresh-
old. A major problem of this algorithm is that the fea-
ture space of the data cannot always be divided orthog-
onally. If the features are randomly split, it is possi-
ble that classifiers do not satisfy the self-sufficiency
requirement [8]. In other words, each classifier must
achieve sufficient classification accuracy.

A modified co-training algorithm, En-Co-training
[12], was used in the activity-recognition domain. The
method uses information from 40 sensors. There are 20
sensors on each leg to identify the posture. The multi-
view approach was changed into single-view by using
all the data for training three classifiers with the same
feature vector and a different learning algorithm. This
is similar to democratic co-learning. The final label is
chosen by majority voting among the three classifiers.
The classified instance is added into the training set of
all the classifiers. The reported results show an average
classification improvement of 14.5 percentage points.

This paper extends our previous research on MCAT
[4]. The MCAT method uses two classifiers. Both are
trained with the same algorithm but on different data.
A meta-classifier is used to make the final class pre-
diction. The decision whether or not to put an instance
into the training set is solved by using another meta
classifier, rather than a threshold as seen in all the men-
tioned methods. In contrast to co-training and en-co-
training, our two domain classifiers have the same fea-
ture set. Therefore, we do not have the problem of di-
viding the sets.

3. Motivating Domain

The MCAT algorithm is applied to activity recog-
nition, which is a very common task in ambient in-

telligence. An activity-recognition classifier is usually
trained using a machine-learning algorithm on the data
retrieved from individuals performing predefined ac-
tivities in a controlled environment, such as a research
laboratory. The classifier trained in this fashion will
typically report a high classification accuracy when
tested in the same environment. However, it is likely
that the classification accuracy will decrease when de-
ployed in a new environment with an end-user, since
each person tends to have specific characteristics and
mannerisms in performing the activities. We faced this
problem during the development and evaluation of the
Confidence system [25,7] in different environments.

The Confidence system is developed for real-time
activity monitoring and detection of abnormal-event
(such as falls), or detection of long-term unusual be-
haviour that results from a developing disease. It is
based on a six-layer architecture shown in Figure 1.
The sensor layer serves raw localisation data to the
next layer. The refining layer filters out the noise and
interpolates the missing data. The reconstruction layer
determines the location and reconstructs a person’s ac-
tivity. The interpretation layer interprets the state of
the person and provides emergency information. The
prevention layer observes the person and detects pos-
sible behavioural deviations [18]. The communication
layer interacts with the user, relatives, or emergency
services. Detailed description of the Confidence sys-
tem can be found in [16,19]. The paper at hand focuses
on the reconstruction layer.

System inputs from the sensor layer are the coordi-
nates of Ubisense location tags [28] (based on UWB
localisation technology) attached to the person’s waist,
chest and ankles. Since the Ubisense system is noisy,
three filters are used, implemented in the refinement
layer, to attenuate it. The data is first processed with
a median filter. Afterwards the data is processed with
an anatomic filter, which applies anatomic constraints.
Finally, the data is processed with the Kalman filter.
Detailed information on the filters were given in [17].

Tag positions in a specific timespan are represented
as snapshots, created with 4 Hz frequency. Each snap-
shot is augmented with positions and various features
for activity recognition and other purposes, such as de-
tection of abnormal behaviour. For each tag the follow-
ing features are computed: thez coordinate of the tag,
the velocity of the tag, the velocity of the tag in thez
direction. For each pair of tags the following features
are computed: the distance in thez direction, the dis-
tance in thexy plane and the total distance. This re-
sults in 30 features per time point. To capture the pat-
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Fig. 1. The multi-layer system architecture of the Confidencesystem. It consists of six layers. The reconstruction layer is the focus of this paper,
since it contains the activity-recognition mechanism.

tern of movement, the snapshot contains a sequence of
features across 10 consecutive time points. Each fea-
ture vector thus contains 300 features, which is further
in the paper referred as a snapshot. The reader is re-
ferred to [22] for more details about the features and
the snapshot.

The reconstruction layer, which is responsible for
activity recognition, can recognise eight atomic (ele-
mentary) activities: standing, sitting, lying, falling, on
all fours, sitting on the ground, standing up, and sit-
ting down. Activity recognition is done by combining
two individual activity-recognition modules, as shown
in Figure 1. The snapshots are processed by a machine-
learning classifier and a rule engine working in par-
allel. Both return the activity that is fed into heuris-
tic Bayesian rules, which provide the final snapshot la-
bel. Each module was evaluated in a controlled envi-
ronment on data of five individuals, using the leave-
one-person-out approach. The classification accuracy
of the machine-learning (ML) module was 82 percent,
while the accuracy of the rule-engine was 80 percent.
When combined by heuristics, activity-recognition ac-
curacy increases to 86 percent. However, if machine-
learning module classification accuracy decreases, the
overall accuracy will also decrease. The classifica-
tion accuracy is the percentage of correctly classi-
fied instances in the dataset. The reader is referred
to [23] for more details on the design and evaluation
of the activity-recognition modules. The high activity-
recognition classification accuracy is essential, since
the entire reasoning of the system (detection of falls
and abnormal behaviour) is based on it. Adapting ac-

tivity recognition to each person helps improve the
overall performance of the system. Accurate recogni-
tion of atomic activities also contribute to better recog-
nition of complex activities [15]. The rest of the paper
is focused on the ML module (Figure 1).

4. The Multi-Classifier Adaptive Training Method
(MCAT)

This section describes the MCAT method that im-
proves the classification accuracy of an initial activity-
recognition classifier using unlabelled data and auxil-
iary classifiers. In addition to the general approach, a
small amount of labelled data from the new real-world
environment and new person is obtained. This is usu-
ally done when the system is introduced to the person
for the first time.

The initial classifier is trained on activities per-
formed by several people. When using this classifier on
a new person, whose physical characteristics are differ-
ent, the recognition classification accuracy can be low,
since each person has a specific way of moving. The
MCAT method uses a few activities performed by the
new person to learn such specifics. The knowledge of
the specifics is later used to adapt the initial classifier
to further improve its performance.

4.1. The MCAT Algorithm

The proposed MCAT algorithm is shown in Figure
2 and presented as pseudo code in Algorithm 1. The
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Fig. 2. The work flow of the algorithm proceeds as follows: Themethod contains two activity-recognition classifiers (general and specific) and
two additional meta-classifiers. The meta-A classifier decides on the final class of the instance, and the meta-B classifier decides whether the
instance is to be included in the training set of the general classifier.

general classifieris the initial classifier trained on the
general domain data. This would be the only classifier
deployed in a typical application that does not use the
proposed method. In Figure 1, this would be the ML
module inside the reconstruction layer. To improve the
general classifier, a set of three auxiliary classifiers are
proposed: (i) thespecific classifier, which is trained on
a small subset of manually labelled data specific for the
person; (ii) themeta-A classifier, which decides which
classifier (specific or general) will classify an instance;
and (iii) themeta-B classifier, which decides whether
the instance should be included in the training set of
the general classifier.

The general classifier is trained on a general set of
labelled data available for the activity-recognition do-
main in a controlled environment. The features are
domain-specific. They are listed in Section 3 and de-
noted as AR (activity recognition) in Table 1. The
machine-learning algorithm is chosen based on its per-
formance on the domain.

The specific classifier is trained on a limited amount
of labelled data that is specific to the new environ-
ment in which the classifiers are deployed (the new
person). Note that this limited dataset does not nec-
essary contain all the classes that are present in the
dataset of the general classifier. This may be due to an
unbalanced distribution of class labels. For example, in
the activity-recognition domain, quick and short move-

ments such as falls are rare. The classes the specific
classifier knows are termed basic. The features and the
machine-learning algorithm should preferably be the
same as those used in constructing the general classi-
fier as shown in the second column of Table 1.

After both classifiers return their outputs (Algorithm
1, lines 5, 6), the meta-A classifier is activated. The
meta-A classifier’s decision problem is to select one
of the two classifiers to classify a new instance (Algo-
rithm 1, lines 8–12). The meta-A classifier should be
trained with the machine-learning algorithm perform-
ing best on the domain. The features for the meta-A
classifier should describe the outputs of the general and
specific classifiers as completely as possible, while re-
maining domain-independent. If domain features are
added to the meta-features, the decision of the meta-
A classifier will also be based on the specifics of the
training data available prior to the deployment of the
classifiers. This may be different from the specifics of
the situation in which the classifiers are deployed. Our
previous work [5] experimentally confirmed that do-
main features do not contribute to higher classifier ac-
curacy of the classifier. Instead, they can result in over-
fitting to the specifics of the training data.

Although the features in meta-A classifiers, de-
ployed in different systems need not be exactly the
same, the following set of features (also shown in the
third column of Table 1) are proposed:
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Algorithm 1 Multi-Classifier Adaptive Training
1: Load classifiersG, S, MA, MB; ⊲ Load all four classifiers
2: timer ← n ⊲ Adaptation time
3: set← {} ⊲ Set of instances that will be added into the training set
4: procedure MCAT(G, S, MA, MB, inst)
5: CG ← G.classify (inst) ⊲ Classify with general classifier
6: CS ← S.classify (inst) ⊲ Classify with specific classifier
7: maattr ← generate features forMA ⊲ Generate meta-A features
8: if MA.classify(maattr) is G then ⊲ Select which classifier will classify the instance
9: class← CG

10: else
11: class← CS

12: end if
13: mbattr ← generate features forMB ⊲ Generate meta-B features
14: if MB.classify(mbattr) is TRUE then ⊲ Should the instance be included into the G dataset
15: set← add(inst)
16: end if
17: timer ← timer− 1
18: if time is 0 then ⊲ Start of adaptation when timer expires
19: Gdataset ← add(set)
20: G.train(Gdataset) ⊲ Adaptation of the general classifier
21: timer ← n ⊲ Set timer to the initial value
22: set← {} ⊲ Empty the set
23: end if
24: return class ⊲ Return class for the current instance
25: end procedure

– The class predicted by the general classifier (CG)
– The class predicted by the specific classifier (CS)
– The probability assigned by the general classifier

toCG (PG(CG))
– The probability assigned by the specific classifier

toCS (PS(CS))
– The probability assigned by the general classifier

toCS (PG(CS))
– The probability assigned by the specific classifier

toCG (PS(CG))
– IsCG one of the basic classes? (Basic(CG))
– AreCG andCS equal? (Equal(CG, CS))

After the selection process, the meta-B classifier
then solves the problem of whether or not an instance
should be included in the general classifier’s training
set (Algorithm 1, lines 14–16). The meta-B classifier’s
output should determine if the current instance con-
tributes to a higher classification accuracy of the gen-
eral classifier. This question is not trivial and there
are several approaches that specifically address it [30].
We use a heuristic that answers the question: "Did the
meta-A classifier select the correct class for the current
instance?" The heuristic performs well and is computa-

Table 1

Features per classifier. The first row represent features used for activ-
ity recognition (AR), rows from 2-10 are the features to be used for
training the meta-A classifier. The feature in the last row is an addi-
tional feature for the meta-B classifier, the confidence of themeta-A
classifier in its prediction.

Classifiers

Features General Specific Meta-A Meta-B

AR x x

CG x x

CS x x

PG(CG) x x

PS(CS) x x

PG(CS) x x

PS(CG) x x

Basic(CG) x x

Equal(CG, CS) x x

Cmeta−A x

tionally inexpensive, so the investigation of more com-
plex approaches will be left for the future work. The
features used in the meta-B classifier are the same as
those in the meta-A classifier, with one addition: The
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confidence of the meta-A classifier in its prediction.
The features of the meta-B classifier can be observed
in the fourth column of Table 1. The meta-B classifier
should be trained with the machine-learning algorithm
performing the best on the domain.

The instances selected as eligible for inclusion into
the dataset of the general classifier are stored in a set
(Algorithm 1, line 15). The adaptation is performed
when the predefined timer expires (Algorithm 1, lines
18–23). The stopping criteria of the algorithm can ei-
ther be running out of unlabelled instances in offline
adaptation or (in the case of online adaptation) a dura-
tion of adaptation in days, hours, weeks or even never.

4.2. Training Procedure

The training of the four classifiers requires the data
to be divided into subsets so that no classifier is used
to classify the data on which it was trained, while max-
imally utilising all the data. In particular, the meta-A
classifier needs data classified by the general and spe-
cific classifiers, neither of which should be trained on
these data. Furthermore, the meta-B classifier needs
data classified by the meta-A classifier, but the meta-A
classifier should not be trained on this data.

We propose a training procedure that divides the
data into subsets for training both the general classi-
fier and the meta-classifiers. The general classifier is
simply trained on the complete dataset, while meta-
classifier training is explained in the following para-
graphs. Steps are labelled a.1 through a.7 for the meta-
A classifier, and b.1 through b.10 for the meta-B clas-
sifier. The procedure is general, but for the purposes
of this paper the activity-recognition domain is used.
Specifically, the publicly available Localisation Data
For Person Activity dataset from the UCI Machine
Learning Repository [29] will be used. The dataset
consists of recordings of five people performing a pre-
defined scenario five times. The scenario is a continu-
ous sequence of activities that represent typical daily
activities. Each person had four Ubisense [28] tags at-
tached to the body (neck, waist, and both ankles). Each
tag returns its current position. The goal is to assign
one of 8 activities to each time frame. The dataset can
be divided five times by the person, and five times by
the scenario repetition, or episode (steps a.1 and b.1).

Meta-A classifier training. The procedure is shown
in Figure 3 and Algorithm 2.

Four people are selected for training a temporary
general classifier (step a.2), which is used to classify
the fifth person (step a.3). This is repeated five times,

once for each person. The resulting complete dataset
is classified with the temporary general classifier (step
a.4). The data classified with the temporary general
classifier is represented with dots in Figure 3. This data
is then split five times by the episode. Since the spe-
cific classifier should be trained on a small amount of
data, one episode for each person is used for training a
temporary specific classifier (step a.5). The remaining
four episodes are classified with the temporary specific
classifier (step a.6). The data classified with the tempo-
rary specific classifier are represented with stars in Fig-
ure 3. There is a total of five temporary specific clas-
sifiers (one per person), each of which classified four
episodes. This finally gives us the data in the step a.7,
which represents the training set for the final meta-A
classifier.

Meta-B classifier training. Figure 4 and Algorithm
3 show this procedure. The steps from b.1 to b.4 are
identical to the steps from a.1 to a.4 in the meta-A clas-
sifier training procedure. Steps that are the same for
meta-A and meta-B training have shaded background
in Figure 4. The data classified with the temporary gen-
eral classifier (dotted data in step b.4) is then divided
by the episode. Four episodes are used to train a tem-
porary meta-A classifier (step b.5), while the remain-
ing episode is kept aside to be classified by this classi-
fier (step b.6). The training then proceeds in essentially
the same way as the training of the final meta-A classi-
fier (steps a.5 through a.7). One episode for each per-
son is used to train a temporary specific classifier (step
b.7), and the remaining three episodes are classified
with the temporary specific classifier (step b.8). This
gives five specific classifiers (one per person), each of
which was used to classify three episodes, yielding the
data in step b.9. This data is used to train the tempo-
rary meta-A classifier. The data that was kept aside in
step b.6 is now retrieved and classified with the tempo-
rary meta-A classifier (b.10). Steps b.5 through b.9 are
repeated five times to classify all five episodes, yield-
ing the training set for the final meta-B classifier (step
b.10).

4.3. Computational complexity

The computational complexity of instance labelling
introduces only a constant increase in computational
load, thus only computational complexity for training
procedure and retraining of the classifier is analysed.
Since MCAT approach may use various algorithms as
the core classifiers, only relative changes in computa-
tional complexity are analysed.
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Fig. 3. Preparing the data for meta-A classifier training.

Algorithm 2 Prepare data for meta-A
1: Load datasetdata;
2: numberOfpersons;
3: dataDot ⊲ Data classified with general classifier
4: dataMetaA ⊲ Data prepared for meta-A training
5: procedure PREPAREDATA FORMETAA(data)
6: for i=0 tonumberOfpersons do
7: G← train(data[not i]) ⊲ Figure 3 Step a.2
8: dataDot[i]← G.classify(data[i]) ⊲ Figure 3 Step a.3
9: end for

10: for i=0 tonumberOfpersons do
11: S ← train(data[i][0]) ⊲ Figure 3 Step a.5
12: dataMetaA[i]← S.classify(dataDot[i][not 0]) ⊲ Figure 3 Step a.6
13: end for
14: return dataMetaA ⊲ Result is data for training meta-A, Figure 3 Step a.7
15: end procedure

Let p be the number of people and lete be the num-
ber of episodes per person. Suppose a base classifier
with the training time complexityOb is chosen. The
training time complexity usingp · e data is defined by
Eq. (1).

Ob(p · e) (1)

The meta-A classifier has three levels of training.
First, it builds p temporary general classifiers using
(p − 1) · e data. Second, it buildsp · e temporary
specific classifiers using less than1 episode unit data.
And third, the final meta-A classifier is built using
p · (e− 1) · e data. The total complexity of training the
meta-A classifier is defined by Eq. (2).

The meta-B classifier has four levels of training.
Similarly, it first buildsp temporary general classifiers
using(p− 1) · e data. Second,p · e temporary specific
classifiers are built using less than1 episode unit data.
Third, e temporary meta-A classifiers are built using
p · (e− 2) · (e− 1) data. Finally, the meta-B classifier
is built onp · e data. The computational complexity is
defined by Eq. (3). The upper limit for total training
computational complexity is given by Eq. (4).

OmetaA ≤ p ·Ob((p− 1) · e) + p · e ·Ob(1)

+Ob(p · (e− 1) · e)

≤ p ·Ob(p · e) + p · e ·Ob(1)

+Ob(p · e
2)

(2)
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Fig. 4. Preparing the data for meta-B classifier training.

Algorithm 3 Prepare data for meta-B
1: Load datasetdata;
2: numberOfpersons;
3: numberOfEpisodes;
4: dataTemp ⊲ Temporary data
5: dataDot ⊲ Data classified with general classifier
6: tempDataMetaA ⊲ Data prepared for temporary meta-A training
7: dataMetaB ⊲ Data prepared for meta-B training
8: procedure PREPAREDATA FORMETAB(data)
9: for i=0 tonumberOfpersons do

10: G← train(data[not i]) ⊲ Figure 4 Step b.2
11: dataDot[i]← G.classify(data[i]) ⊲ Figure 4 Step b.3
12: end for ⊲ Result isdataDot Figure 4 Step b.4
13: for j=0 tonumberOfEpisodes do
14: dataTemp← dataDot[not j] ⊲ Figure 4 Step b.5
15: for i=0 tonumberOfpersons do
16: S ← train(dataTemp[i][0]) ⊲ Figure 4 Step b.7
17: tempDataMetaA[i]← S.classify(dataTemp[i][not 0]) ⊲ Figure 4 Step b.8
18: end for
19: tempMetaA← train(dataTempMetaA) ⊲ Figure 4 Step b.9
20: dataMetaB[j]← tempMetaA.classify(dataDot[j]) ⊲ Figure 4 Step b.6
21: end for
22: return dataMetaB ⊲ Result is data for training meta-B, Figure 4 Step b.10
23: end procedure

The MCAT training procedure introduces polyno-
mial increase (of power two) in the number of trained
classifiers as well as in the amount of trained data.

Since instance labelling introduces only a constant in-
crease, that is, an instance is labelled with four clas-
sifiers instead of one, the main source of complex-
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ity increase remains in the classifier training proce-
dure. Since the training procedure is run only when the
MCAT is initialised, the complexity increase does not
affect real-time labelling. Occasional retraining of the
general classifier, which is triggered during labelling,
requiresOb(p · e + ǫ) steps, whereǫ is the number of
newly arrived instances.

OmetaB ≤ p ·Ob((p− 1) · e)

+ e · p · (e− 1) ·Ob(1)

+ e ·Ob(p · (e− 2) · (e− 1))

+Ob(p · e)

≤ (p+ 1) ·Ob(p · e)

+ p · e · (e− 1) ·Ob(1)

+ e ·Ob(p · e
2)

(3)

Oupper ≤ [p ·Ob(p · e) + p · e ·Ob(1) +Ob(p · e
2)]

+ [(p+ 1) ·Ob(p · e)

+ p · e · (e− 1) ·Ob(1) + e ·Ob(p · e
2)]

+ [Ob(p · e)]

≤ (2 · p+ 2) ·Ob(p · e) + p · e2 ·Ob(1)

+ (e+ 1) ·Ob(p · e
2)

(4)

5. Experimental Evaluation

The experimental evaluation focuses on the activ-
ity recognition discussed in the previous sections. The
main reason why the general classifier will likely not
perform well in a real-world environment on a partic-
ular person is that each person has their own specifics,
such as the height and movement characteristics. The
general classifier, which is trained on several people,
can then recognise the activities of a "general person".
Obtaining enough training data for a particular end-
user is difficult, so the MCAT method is well-suited
for solving this problem.

5.1. Experimental Setup

The experimental data was collected using the Con-
fidence system described in Section 3. Two differ-

ent sets of data were collected, one for the classifier
training (the training dataset) and one for testing the
semi-supervised adaptation to the individuals (the test
dataset).

The training dataset was retrieved from the UCI Ma-
chine Learning Repository [29]. The data was divided
into segments as discussed in Section 4.2 and used for
training the classifiers.

The test dataset consists of the recordings of 10 peo-
ple performing typical daily activities. All individuals
were different than in the training dataset. Each person
repeated the scenario five times, which provided an av-
erage 2.8 hours of data per person, and 28.5 hours al-
together. The scenario was designed to reflect the dis-
tribution of the activities during one day of an average
person. The scenario contains eight activities: stand-
ing, lying, sitting, sitting down, standing up, falling, on
all fours, and sitting on the ground. Compared to the
training dataset, the scenario in the test dataset con-
tains an additional episode of sitting on the ground,
with the respective transitions.

The training dataset contains more labels than the
test dataset, so the transition activities were merged
as follows. The activities lying down and sitting down
were merged into the going down activity. The stand-
ing up from lying, standing up from sitting, and stand-
ing up from sitting on the ground activities were
merged into the standing up activity. The walking ac-
tivity was merged into the standing activity.

The test dataset was divided as follows in order to
create datasets needed for the proposed method: (i)
the basic activity dataset had 10 people performing the
basic activities (30 seconds per activity), which were
lying, standing, and sitting; it was used to train spe-
cific classifier for each person and (ii) the unlabelled
test dataset had 10 people performing the scenario five
times (125 minutes per person on average, data for
the basic activity dataset is excluded); it was used for
the semi-supervised adaptation, which is the core of
MCAT.

Demographic information on the people used for
MCAT adaptation is shown in Table 2. Additional in-
formation about the datasets can be seen in Tables 3
and 4, which show the number of instances, duration
and distribution of classes per person of the unlabelled
test dataset and the basic activity dataset, respectively,
in comparison to the training dataset.

The classifier training used the training dataset, as
described in Section 4.2. The meta-A classifier was
trained with the Support Vector Machines algorithm
[24] and the meta-B classifier used the C4.5 ma-
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Table 2

Information about the people used in the test dataset

Person A B C D E F G H I J

Gender M M F M M M M F F F

Age 27 26 28 28 24 27 25 34 29 2 7

Height (cm) 194 181 160 184 188 178 187 160 172 168

Table 3

Number of instance, duration in hours and distribution of classes per person of the unlabelled test dataset in comparison to training dataset used
to train the general classifier.

Training Person

dataset A B C D E F G H I J

# Instances (x10000) 4.1 2.5 2.6 3.0 3.1 3.2 3.4 3.2 3.2 3.5 3.2

Duration (hours) 3.80 2.28 2.36 2.76 2.84 2.93 3.18 2.97 2.96 3.23 2.96

Standing (%) 19.56 30.27 31.56 29.40 31.87 28.84 29.02 24.98 29.27 28.40 31.03

Sitting (%) 16.67 15.82 16.10 16.11 15.82 16.06 14.69 16.19 14.96 14.67 14.96

Lying (%) 33.14 31.57 31.18 30.52 30.62 31.22 30.25 32.40 33.43 33.38 31.43

Sitting on the ground (%) 7.20 15.26 15.69 15.46 15.36 16.65 14.69 19.00 16.18 17.31 15.59

On all fours (%) 3.06 0.49 0.54 0.71 0.57 0.67 0.72 0.66 0.69 0.44 0.65

Falling (%) 1.82 1.23 0.92 0.88 1.17 0.64 0.84 0.87 0.62 0.62 0.79

Going down (%) 4.80 1.42 0.96 1.08 1.25 1.46 1.75 1.37 1.12 1.01 1.20

Standing up (%) 13.75 3.94 3.05 5.85 3.34 4.46 8.04 4.52 3.74 4.17 4.34

Table 4

Number of instance, duration in minutes and distribution of classes per person of the basic dataset used to train the specific classifier in comparison
to training dataset used to train the general classifier. Theclasses that are not present in the basic dataset are omitted from the table.

Training Person

dataset A B C D E F G H I J

# Instances 40968 304 303 303 307 305 304 302 305 306 307

Duration (minutes) 228 1.69 1.68 1.68 1.71 1.69 1.69 1.68 1.69 1.70 1.71

Standing (%) 19.56 33.88 33.66 33.66 33.22 33.44 34.21 34.44 32.79 34.31 33.22

Sitting (%) 16.67 32.57 32.34 33.33 33.55 34.10 32.24 32.78 33.44 32.35 33.55

Lying (%) 33.14 33.55 33.99 33.00 33.22 32.46 33.55 32.78 33.77 33.33 33.22

chine learning algorithm [26]. The classifiers could
be trained with other machine-learning algorithms, but
these two algorithms proved satisfying in experiments.
Both were used with the default parameter values as
implemented in the Weka suite [14], and the features
presented in Section 4.2 and in Table 1. The general
classifier was trained with the Random Forest algo-
rithm [3] and the features presented in Section 3 and in
Table 1.This algorithm was selected according to the
results from previous research [11]. The classifier is
82 percent accurate (as seen in Section 3) when eval-
uated using the leave-one-person out approach. This
implies that one can expect the same classification ac-
curacy when the classifier is deployed in the new en-

vironment. However, this is not the case, as Table 5
shows in the column labelled with G (initial general
classifier). There, the average classification accuracy is
70.03 percent. The specifics of each person when per-
forming the activities explain this decreased classifica-
tion accuracy.

The specific classifier was trained with the Random
Forest algorithm on the basic activity dataset for each
person in the test dataset. The unlabelled test dataset
of that person was processed with the MCAT method.
The general classifier was retrained after each episode
of the test scenario (five episodes per person), to take
advantage of the instances from the unlabelled dataset
that were included in its training dataset.



12 Božidara Cvetković et al. / Multi-Classifier Adaptive Training

The MCAT method was compared to five compet-
ing methods: two transductive approaches that only
labelled the instance and did not perform any adap-
tation; and three inductive semi-supervised learning
approaches. The transductive approaches are: (i) the
baseline approach; and (ii) the MCAT without meta-
B approach. The inductive approaches are: (i) self-
training; (ii) majority vote; and (iii) threshold-based
MCAT.

The baseline approachmerges the training data of
the general and the specific classifier into one training
set and then trains a new general classifier.

MCAT without meta-B is MCAT without the gen-
eral classifier adaptation. It builds both the general and
specific classifier and uses the meta-A classifier to de-
cide which one to trust.

Self-training is a well-known method for semi-
supervised learning [10]. It uses the general classifier
for classification. The instances in the unlabelled test
dataset with 100 percent classification confidence are
added to its training set. A 100 percent confidence is
most commonly used as a self-training threshold in re-
lated work. Self-training was not specifically adapted
to be used with our dataset.

The majority vote is slightly modified Democratic
co-learning [31]. The modification is done on the level
of decision, since the original paper does not con-
tain enough information for effective reimplementa-
tion. The majority vote uses three classifiers trained on
the same training set with different machine-learning
algorithms. The algorithms that achieved the high-
est classification accuracy in the evaluation of general
classifier with the leave-one-person out approach were
used. These were: Support Vector Machines, Random
Forest, and C4.5. The instances in the unlabelled test
dataset with 100 percent classification confidence were
included in the training set of all classifiers as seen in
Democratic co-learning.

The threshold-based MCAT is the previous ver-
sion of the current MCAT algorithm [5]. It uses a
threshold rule of 100 percent instead of the meta-B
classifier to select the instances to be included in the
training set of the general classifier. It was included
in the comparison to show the benefits of the meta-B
classifier.

The experiment was done in two steps: The classi-
fier training and then the MCAT as a semi-supervised
adaptation of the initial general classifier.

The data for each person was processed two times
by all the methods. In the first run, the instances se-
lected for inclusion in the training set were assigned a

weight of 2 to accelerate the adaptation and in the sec-
ond run the weight was decreased to 1 to avoid over-
fitting. If an instance already existed in the training set
and was selected for the inclusion again, it was dis-
carded.

5.2. Results

Table 5 shows the absolute difference in classifica-
tion accuracies between the initial general classifier
and the general classifier after adaptation. The left side
of Table 5 shows the classification accuracy of the ini-
tial general classifier G and the specific classifier S.
The right side of Table 5 shows the gain/loss in clas-
sification accuracy of the MCAT and the competing
methods, compared to the initial general classifier.

The results for the general classifier show a decrease
in classification accuracy when used in a different en-
vironment than the controlled environment, which had
a classification accuracy of 82 percent (cross-validated
on the training set). The average classification accu-
racy on 10 people was 70.03 percent (Table 5, column
Initial G). The results of the specific classifier (Table
5, column Specific S) show that it achieved a slightly
higher classification accuracy than the initial general
classifier in several individual cases, even though it
was able to predict only three basic classes (lying,
standing, sitting).

The worst results were with the baseline method,
where the merged datasets (general and specific) were
used for training. The classification accuracy for four
people decreased compared to the general classifier.
This is because some instances from the specific and
general classifier were similar but differed in the label.
The results of using the meta-A classifier to select the
final class showed that this method outperformed the
general classifier by 6.14 percentage points (pp). The
higher classification accuracy is due to the knowledge
of the basic activities representing 76.67 percent of the
dataset. This increase in the classification accuracy re-
veals that using a classifier for class selection is one
reason for the success of the proposed approach. An-
other reason is the semi-supervised adaptation.

The results of the self-training show that in a few
cases, where the general classifier has a low initial
classification accuracy, the method performs poorly
and further weakens the classifier. The average classi-
fication accuracy after adaptation was 71.91 percent.
The results of the majority-vote method show that in-
troducing extra classifiers contributes to a gain in clas-
sification accuracy compared to the initial classifier.
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Table 5

Classifier classification accuracies and comparison of the MCAT method to the transductive approaches: baseline (G and S merged G&S) and
MCAT without adaptation (only meta-A); and semi-supervised approaches: self-training (ST) and majority vote (MV); and our: threshold-based
MCAT (TB) and full MCAT.

Initial classifier (classification accuracy %) Method Comparison (gain/loss in pp against G)

Person Initial G Specific S G&S Meta-A ST MV TB MCAT

A 75.28 76.82 -10.57 +3.62 +2.36 +0.38 +3.82 +9.18

B 76.28 60.06 +1.17 +0.58 +0.28 +0.64 +0.70 +7.38

C 62.87 70.85 +8.52 +12.82 -1.18 +3.07 +13.46 +20.58

D 69.55 76.17 -0.21 +8.99 +2.23 +2.10 +9.77 +12.57

E 68.13 74.23 +0.20 +5.78 -1.81 +6.73 +9.76 +16.22

F 73.57 68.18 -4.42 +2.62 +6.07 +3.67 +8.08 +8.86

G 65.42 67.72 5.97 +6.99 -0.21 +8.57 +9.76 +12.60

H 73.45 67.46 -8.02 +0.01 +4.31 +0.41 +4.51 +10.53

I 62.09 68.08 +7.75 +16.81 -0.18 +11.03 +16.98 +17.08

J 73.67 74.17 +1.18 +3.15 +6.87 +5.98 +8.73 +11.65

Average 70.03 70.37 +0.16 +6.14 +1.87 +4.26 +8.56 +12.66
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Fig. 5. Adaptation process. Increase in classification accuracy per person and on average.

The average classification accuracy after the adapta-
tion with the majority-vote method was 74.29 percent.
The average classification accuracy of the general clas-
sifier after adaptation using the previous version of
MCAT was 78.59 percent. The average gain in the
classification accuracy was 8.56 percentage points.

The results for the MCAT method show the average
gain in the classification accuracy of 12.66 percentage

points, and the average classification accuracy of the
classifier was 82.70 percent. In the best case (Person
C), it achieves an increase in the classification accu-
racy of 20.58 percentage points. The worst case (Per-
son B) had an increase in the classification accuracy
of only 7.38 percentage points. Person J achieved the
highest classification accuracy of 85.32 percent. The
MCAT method outperformed the self-training method
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(by 10.79 percentage points), the majority vote (by
8.41 percentage points), and the previous version of
MCAT (by 4.11 percentage points).

Figure 5 shows the trend of changing the classifi-
cation accuracy with the adaptation time. The dashed
lines represent the general-classifier classification ac-
curacy for each person, and the solid line is the average
general-classifier classification accuracy line for the
entire process. We observed that the average line in-
creased rather monotonously. The reported final clas-
sification accuracy was measured after all the data was
used. We speculate that if more data was fed to the
MCAT method, we could gain more classification ac-
curacy before achieving convergence.

To further evaluate the results of the MCAT method,
a paired two-tailed t-test for statistical significance of
the algorithm was performed. The t-test was performed
for initial classifiers (general and specific) and for each
algorithm the MCAT method was compared to. The
results of the test returned a probability of6∗10−4 < p

< 4.8∗10−6. The conclusion is that MCAT statistically
outperformed all other methods.

6. Conclusion and Discussion

The paper focuses on the problem of improving
an initial activity-recognition classifier using unla-
belled data. The two main contributions of this paper
are: (i) a novel approach for specialising the activity-
recognition classifier by semi-supervised learning re-
ferred to as MCAT; and (ii) a procedure for training
multiple classifiers from a limited amount of labelled
data that fully utilises the data. The MCAT method
for the semi-supervised learning uses auxiliary classi-
fiers to improve the classification accuracy of the initial
general classifier. It uses a specific classifier trained on
a small amount of labelled data specific to a particular
person, in addition to the general-knowledge classifier.
The two additional meta-classifiers decide whether to
trust the general or the specific classifier on a given
instance, and whether or not the instance should be
added to the training set of the general classifier.

The MCAT method was compared to two transduc-
tive approaches and three inductive semi-supervised
approaches. The MCAT method significantly outper-
formed the baseline approach (by an average 12.51
percentage points) and the MCAT without meta-B
(by an average 6.53 percentage points). The MCAT
method also significantly outperformed inductive ap-
proaches. It outperformed the self-training (by an av-

erage 10.79 percentage points), the majority vote (by
an average 8.41 percentage points), and the threshold-
based MCAT (by an average 4.11 percentage points).
On average, the classification accuracy of the initial
classifier improved by 12.66 percentage points. The
classification accuracy trend analysis suggest that if
there was more data to feed to the MCAT algorithm,
a higher classification accuracy could be achieved be-
fore convergence.

The outcomes of the experiment were tested for
statistical significance with a paired two-tailed t-test.
The results show that MCAT statistically significantly
(p << 0.01) outperformed all other methods and the
initial classifiers.

To verify if MCAT can significantly contribute to
further development of the ambient intelligence appli-
cations, many more tests will have to be performed.
It is not clear yet if the method is successful only
for recognising an individual’s activities or if it can
be used for general learning tasks. Real-time systems
produce large amount of unlabelled data that can be
used for adapting the modules to a specific environ-
ment or person. Each person has specific mannerisms
in performing activities. This can be used to achieve
higher classification accuracy on activity recognition.
MCAT offers several potential benefits, including ac-
curate recognition of atomic activities, which can also
contribute to more reliable recognition of the complex
activities.

In addition to more concrete analysis of the algo-
rithms performance, overfitting of the classifiers and
drift, the algorithm will have to be evaluated on several
other domains. Moreover, the future work includes fur-
ther investigation of the MCAT algorithm to work on
regression domains, for example, estimation of human
energy expenditure.

Acknowledgments.
The research leading to these results was partly sup-

ported by the ARRS under the Research Programme
P2–0209, partly by the European Community’s Frame-
work Programme FP7/2007–2013 under grant agree-
ment N 214986.

References

[1] N. Bicocchi, N. Mamei, A. Prati, R. Cucchiara, F. Zambonelli,
Pervasive Self-Learning with Multi-modal Distributed Sensors,
in: 2nd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, IEEE Press, Washington, 2008, pp.
61–66.
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